Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.06.16.23291449

ABSTRACT

Background: There is a need to understand the duration of infectivity of primary and recurrent COVID-19 and identify predictors of loss of infectivity. Methods: Prospective observational cohort study with serial viral culture, rapid antigen detection test (RADT) and RT-PCR on nasopharyngeal specimens of healthcare workers with COVID-19. The primary outcome was viral culture positivity as indicative of infectivity. Predictors of loss of infectivity were determined using multivariate regression model. The performance of the US CDC criteria (fever resolution, symptom improvement and negative RADT) to predict loss of infectivity was also investigated. Results: 121 participants (91 female [79.3%]; average age, 40 years) were enrolled. Most (n=107, 88.4%) had received [≥]3 SARS-CoV-2 vaccine doses, and 20 (16.5%) had COVID-19 previously. Viral culture positivity decreased from 71.9% (87/121) on day 5 of infection to 18.2% (22/121) on day 10. Participants with recurrent COVID-19 had a lower likelihood of infectivity than those with primary COVID-19 at each follow-up (day 5 OR, 0.14; p<0.001]; day 7 OR, 0.04; p=0.003]) and were all non-infective by day 10 (p=0.02). Independent predictors of infectivity included prior COVID-19 (adjusted OR [aOR] on day 5, 0.005; p=0.003), a RT-PCR Ct value <23 (aOR on day 5, 22.75; p<0.001), but not symptom improvement or RADT result. The CDC criteria would identify 36% (24/67) of all non-infectious individuals on Day 7. However, 17% (5/29) of those meeting all the criteria had a positive viral culture. Conclusions: Infectivity of recurrent COVID-19 is shorter than primary infections. Loss of infectivity algorithms could be optimized.


Subject(s)
COVID-19 , Infections
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.13.21264960

ABSTRACT

AbstractO_ST_ABSBackgroundC_ST_ABSWe evaluated the use of rapid antigen detection tests (RADT) for the diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in school settings to determine RADTs performance compared to PCR. MethodsIn this real-world, prospective observational cohort study, high-school students and staff were recruited from two high-schools in Montreal (Canada) and followed from January 25th to June 10th, 2021. Twenty-five percent of asymptomatic participants were tested weekly by RADT (nasal) and PCR (gargle). Class contacts of cases were tested. Symptomatic participants were tested by RADT (nasal) and PCR (nasal and gargle). The number of cases and outbreaks were compared to other high schools in the same area. ResultsOverall, 2,099 students and 286 school staff members consented to participate. The overall RADTs specificity varied from 99.8 to 100%, with a lower sensitivity, varying from 28.6% in asymptomatic to 83.3% in symptomatic participants. Secondary cases were identified in 10 of 35 classes. Returning students to school after a 7-day quarantine, with a negative PCR on D6-7 after exposure, did not lead to subsequent outbreaks. Of cases for whom the source was known, 37 of 57 (72.5%) were secondary to household transmission, 13 (25%) to intra-school transmission and one to community contacts between students in the same school. ConclusionRADT did not perform well as a screening tool in asymptomatic individuals. Reinforcing policies for symptom screening when entering schools and testing symptomatic individuals with RADT on the spot may avoid subsequent significant exposures in class. Table of Contents SummaryRapid antigen tests were compared to standard PCR to diagnose SARS-CoV-2 infections in high-school students. They performed better in symptomatic individuals. Whats Known on This SubjectRapid antigen detection tests (RADT) are often used to diagnose respiratory pathogens at the point-of-care. Their performance characteristics vary, but they usually have high specificity and moderate sensitivity compared with PCR. What This Study AddsRADT sensitivity ranged from 28.6% in asymptomatic individuals to 83.3% in symptomatic individuals. Return to school after 7 days of quarantine was safe in exposed students. Secondary cases were identified in 28% of classes with an index case.


Subject(s)
Severe Acute Respiratory Syndrome
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.11.21251938

ABSTRACT

We prospectively compared natural spring water gargle to combined oro-nasopharyngeal swab (ONPS) for the diagnosis of coronavirus disease 2019 (COVID-19) in paired clinical specimens (1005 ONPS and 1005 gargles) collected from 987 unique early symptomatic as well as asymptomatic individuals from the community. Using a direct RT-PCR method with the Allplex 2019-nCoV Assay (Seegene), the clinical sensitivity of the gargle was 95.3% (95% confidence interval [CI], 90.2 to 98.3%) and was similar to the sensitivity of the ONPS (93.8%; 95% CI, 88.2 to 97.3%), despite significantly lower viral RNA concentration in gargles, as reflected by higher cycle threshold values. No single specimen type detected all COVID-19 cases. SARS-CoV-2 RNA was stable in gargles at room temperature for at least 7 days. The simplicity of this sampling method coupled with the accessibility of spring water are clear advantages in a pandemic situation where testing frequency, turnaround time and shortage of consumables and trained staff are critical elements.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL